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NUMERICAL STUDY OF HYDRODYNAMICS AND

HEAT AND MASS TRANSFER OF A DUCTED GAS–VAPOR–DROPLET FLOW

UDC 536.24V. I. Terekhov and M. A. Pakhomov

A computational model has been developed to predict heat and mass transfer and hydrodynamic char-
acteristics of a turbulent gas–vapor–droplet flow. Turbulent characteristics of the gas phase are
computed using the k–ε model of turbulence. It is shown that, with increasing inlet droplet diameter,
the rate of heat transfer between the duct surface and the vapor–gas mixture decreases appreciably,
whereas the wall friction increases only insignificantly. The predicted values agree fairly well with
available experimental and numerical data.
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Introduction. Gas–vapor–droplet flows have gained wide application in industry, for instance, in power-
equipment components, in chemical apparatus, and in aircraft air-conditioning systems. With two-phase heat
carriers, heat-transfer intensification is achieved at the expense of the latent evaporation heat absorbed during
liquid-droplet evaporation in a two-component vapor–gas or in a single-component vapor flow. Involvement of a
liquid phase and its boundary-layer evaporation necessitates taking into account the transfer of heat and mass
between the phases. A detailed study of the mechanism underlying this transfer is especially important in the
supercritical flow region of vapor generators, where the near-wall liquid film loses continuity and a transition from a
dispersed-annular to dispersed flow mode occurs [1]. With an incondensable gas present in the mixture, one has to
take into account the diffusion of vapor into the vapor–gas flow. The presence of a second gas-phase component (for
instance, of air premixed to steam) substantially complicates the solution of the problem since it becomes necessary
to simultaneously solve the energy and diffusion equations for the vapor–gas mixture.

Many works have been devoted to theoretical and experimental investigation of heat-transfer and hydrody-
namic characteristics of two-phase turbulent flows [1–10]. Most extensively studied have been laminar and turbu-
lent vapor–droplet flows [2–4]. Simultaneously, ducted turbulent gas–vapor–droplet flows, which are of considerable
practical significance, have not been adequately considered (see, for instance, [5–10]).

The use of two-phase heat carriers in technical devices is seriously hampered by the lack of reliable exper-
imental or numerical heat- and mass-transfer data for such flows and data on flow dynamics in them. Available
numerical studies of heat-transfer features in gas–vapor–droplet flows [5, 7] use quite a number of simplifying as-
sumptions lacking rigorous substantiation; among these assumptions, for instance, are the integral approach to
predicting heat- and mass-transfer characteristics of two-phase flows [5] and the asymptotic theory of turbulent
boundary layer [7].

Models based on solving systems of differential boundary-layer equations for a two-phase two-component
mixture are devoid of the majority of the above deficiencies. Such models make it possible to more adequately
predict heat- and mass-transfer processes in two-component gas–vapor–droplet flows [8–10]. The turbulent regime
of a ducted two-phase gas–vapor–droplet flow was numerically examined in [8]. The computational model of [8] was
constructed around the algebraic model of turbulence [11].
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On the whole, the problem statement in the present study is much the same as in [8], but the two-parametric
k–ε-model of turbulence is used to close the governing equations [12]. Impact of many factors, including deposition
of droplets onto the duct wall and their evaporation on the duct surface and in the duct volume, is examined.
Results of testing the model are reported and compared with available experimental data.

1. Physical Model. We consider heat- and mass-transfer and hydrodynamic characteristics of a ducted
turbulent gas–vapor–droplet flow with allowance for droplet evaporation, interaction between the phases, droplet
deposition onto the duct wall, droplet-to-wall heat transfer, and vapor diffusion into the vapor–gas mixture. We
imply that the annular near-wall liquid film has already dried out (i.e., the wall temperature Tw is higher than the
Leidenfrost temperature for the droplets) [1]. Radiative heat transfer is ignored [3–10]. All droplets are assumed
to undergo instantaneous evaporation as they touch the wall, and the duct wall, therefore, always remains dry.
Conductive heat transfer due to immediate droplet-wall contacts is treated within the framework of the model [5].
In the present work, a three-stage mechanism of heat transfer in the two-phase flow is considered:

1) the wall heat is transferred to droplets on the duct surface to be subsequently spent on their evaporation;
2) the wall heat is transferred to the vapor–gas mixture;
3) some part of the heat transferred to the vapor–gas mixture is subsequently transferred to liquid droplets

and is spent on their heating and evaporation.
The volume fraction of the liquid phase is small (Zliq < 10−4), and the droplets are rather fine (diameter

d1 < 100 µm). We assume that all particles in each cross-section of the duct have identical sizes and are uniformly
distributed over the volume. This mechanism can be realized in practice due to intense turbulent mixing of the flow
and droplets across the duct. No coalescence or fractionation of droplets occurs in the flow [5]. According to [1],
this assumption can be adopted provided that Zliq 6 10−4.

In the vapor–gas flow, the droplets act as a distributed sink of heat and a distributed source of vapor. The
mixture gives off heat to liquid droplets, and the released vapor undergoes heating to the main-flow temperature
and diffuses into regions with a lower vapor content. The heat transfer from the vapor–gas mixture to the droplets
is due to heat conduction and convection. The droplets and their evaporation exert no influence on turbulent
characteristics of the gas phase.

In the inlet plane of the duct, the distributions of temperatures and velocities of the phases are uniform. All
droplets at the duct inlet have identical sizes and temperatures. In the computations, the initial temperatures of
the phases could be assumed to be either identical or different.

2. Mathematical Model. Under the adopted assumptions, the hydrodynamic and heat- and mass-transfer
characteristics of the two-phase flow can be described by a system of differential axisymmetric-flow equations.

System of Governing Equations. The continuity equation, the equation of motion, the energy equation, and
the mass-transfer equation for the binary vapor–gas mixture in the boundary-layer approximation are
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Here U and V are the axial and radial velocities, x and r are the axial and radial coordinates, J is the vapor-mass
flux from the surface of an evaporating droplet, n = ρMliq,1/(ρliqπd

3
1/6) is the numerical concentration of particles

in unit volume, ρ is the density, µ is the dynamic viscosity, Cp is the specific heat capacity, P is the pressure,
Aliq = πd2/4 is the cross-sectional area of a particle, T is temperature, α is the coefficient of heat transfer to
an evaporating droplet, D is the vapor diffusivity in the vapor–gas mixture, Kvap is the mass concentration of
vapor in the binary vapor–gas mixture, and Pr = Cpµ/λ and Sc = ν/D are the Prandtl and Schmidt numbers,
respectively. The subscripts “air,” “liq,” and “vap” refer to air, droplet, and vapor, respectively; the subscript “t”
marks turbulent characteristics.
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To determine the turbulent viscosity of the gas phase, we used the k–ε model of turbulence proposed in [12].
This modification of the k–ε model was chosen considering the fact that this modification, as compared to other
models, more adequately predicts characteristics of carrier-phase turbulence [13, 14]. The transfer equations for
turbulent kinetic energy and for the rate of its dissipation are
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where k is the turbulent kinetic energy, ε is the rate of its dissipation, µt = Cµfµρk
2/ε, σk = 1.4, σε = 1.3,

Cµ = 0.09, Cε1 = 1.45, Cε2 = 1.9, f1 = 1, Gk = µt(∂U/∂r)2, f2 = [1− exp (−y+/6)]2[1− 0.3 exp (−(Re3/4
t /6.5)2)],

fµ = [1− exp (−y+/26)]2(1 + 4.1/Re3/4
t ), and Ret = k2/(εν).

The expression for the derivative ∂P/∂x in the equation of motion over the inlet section of the duct can be
represented in the form

−∂P
∂x

= ρU0
∂U0

∂x
. (2)

In formula (2), the term taking into account the effect due to the droplets is omitted. Estimates show that,
in the range of droplet concentrations dealt with in the present study and at small values of the relative velocity
between the phases, the computation results obtained with and without this term differ only within 5%.

To determine the derivative ∂P/∂x, we use the equation of constancy of the mass-flow rate in the duct

ρU0π(R− δ)2 + 2ρπ

R∫
R−δ

Ur dr = G1 +G2, (3)

where R is the duct radius, δ is the boundary-layer thickness, U0 is the flow velocity at the duct axis, and G1

and G2 are the mass-flow rate of the mixture in the current cross-section and the rate of the mass flow due to
vaporization, respectively. The formulas for G1 and G2 in (3) have the form

G1 = ρUmπR
2(Mair +Mvap), G2 = ρvapUmπR

2(Mvap,i −Mvap,i−1).

Finally, the equation for the axial velocity U0 transforms into
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Balance Equations for Vapor Energy and Mass at the Surface of an Evaporating Droplet. We supplement
relations (1) with the energy-balance equation for the liquid phase
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and with the equation of vapor-mass conservation on the surface of an evaporating droplet [15]

J = JK∗vap − ρvapD
∂K∗vap

∂r
, (6)

where L is the specific phase-transition heat and K∗vap is the vapor concentration at the droplet surface under
saturation conditions for the droplet temperature Tliq. Taking into account that the diffusional Stanton number
Std has the form

Std = − ρvapD

ρU(K∗vap −Kvap)
∂K∗vap

∂r
,

we can write the equation of mass conservation (6) as

J = StdρUb1,d, (7)

where
b1,d = (K∗vap −Kvap)/(1−K∗vap) (8)

is the diffusional injection parameter determined from the saturation curve.
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The equations for the heat and mass fluxes from the surface of a non-evaporating sphere are [1]

Nup = αpd/λ = 2 + 0.6 Re1/2
liq Pr1/3, Shp = βd/D = 2 + 0.6 Re1/2

liq Sc1/3.

Here Reliq = ρd
√

(U − Uliq)2 + (V − Vliq)2/µ is the particle Reynolds number based on the slip velocity of the
phases, Shp is the Sherwood number, and β is the mass-transfer coefficient; the subscript“p” refers to non-
evaporating particles.

The diffusional Stanton number can be expressed as [15]

Std = Shp/(Reliq Sc).

Then, Eq. (6) transforms into

J = (2 + 0.6 Re1/2
liq Sc1/3)ρUb1,d/(Reliq Sc). (9)

According to [16], the coefficient of heat transfer to evaporating droplets α can be related to the heat-transfer
coefficient of non-evaporating droplets αp by the following formula:

α = αp/[1 + Cp(T − Tliq)/L]. (10)

The material-balance equation for a binary vapor–air mixture is

Kair +Kvap = 1.

For a ternary vapor–gas–liquid mixture, the analogous equation is

Mair +Mvap +Mliq = 1. (11)

The relation between the mass concentrations of the mixture components (K and M) is given by the formulas

Kvap = Mvap/(Mair +Mvap), Kair = Mair/(Mair +Mvap) = 1−Kvap. (12)

The current droplet diameter in the ith section can be found using the formula [8]

ρliqπd
3
i /6 = ρliqπd

3
i−1/6− Jπd2

i−1∆x/Um,i,

where ∆x is the distance between the computation cross-sections along the axial coordinate and Um,i is the mean
flow velocity in the current cross-section. The choice of the velocity Um,i as a characteristic mean velocity of the
flow was motivated by radial uniformity of droplet sizes.

In flows with intense evaporation, the gas-phase flow rate increases in the downstream direction due to
vapor generation. The mean-mass velocity of the vapor–gas mixture in the current cross-section of the duct, with
allowance for the vapor-mass income from evaporating droplets, was calculated from the formula

Um,i = Um,i−1/[1− nρliq(d3
i − d3

i−1)/ρ].

The turbulent Prandtl and Schmidt numbers were assumed to be uniform both over the duct length and
over the duct radius: Prt = Sct = 0.9.

A Model for Droplet Deposition onto the Duct Wall from the Two-Phase Flow. To predict the rate of
deposition of liquid droplets onto the duct wall from the turbulent flow, we use the theoretical dependence proposed
by Gusev et al. [17]:
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Here kliq is the rate of droplet deposition onto the wall, B = 12.73
√
ρ/ρliqπν

3/(1.381 · 10−23TU∗) is the factor taking
into account the influence of Brownian diffusion on droplet deposition [17], τ+ = ρτU2

∗/µ is the dimensionless
relaxation time of the droplets, τ = ρliqd

2/(18µ(1 + Re2/3
liq /6)) is the relaxation time of the droplets, E = 1 +

Re2/3
liq /6 is the correction factor that makes allowance for the deviation of the flow around a droplet from the Stokes

law, U∗ is the dynamic velocity, R+ = RU∗/ν is the dimensionless duct radius, and R is the duct radius. The
subscript “plus” indicates that the parameter is expressed in terms of dynamic variables.
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To determine the mass concentration of particles deposited on the duct wall (Mliq,w), we use the following
algebraic relations:

Mliq,w =
nwρliqπd

3

6ρ
, nw =

Nw

πR2∆x
, Nw =

6mw

ρliqπd3
, mw = Jw ∆x 2π∆r∆t.

Here Jw = kliqρliq is the mass velocity of droplet deposition, ∆x and ∆r are the steps along the axial and radial
coordinates, ∆t is time, mw is the mass of the liquid on the duct wall, Nw is the number of droplets deposited onto
the wall, nw is the numerical concentration of the liquid phase deposited on the wall from the two-phase flow, and
n = ni−1 − nw is the current numerical concentration of particles in the flow.

Conductive Droplet-to-Wall Heat Transfer. During deposition of droplets onto the wall, some portion of
the wall heat flux is spent on their evaporation. As in the majority of previous models (see, for instance, [5]),
we assume that the heat fluxes obey the superposition principle. The heat flux supplied to the duct surface, qw,
includes components corresponding to the wall-to-droplet heat flux (qw,liq) and to the wall-to-mixture heat flux
(qw,fl).

According to [5], the density of the wall-to-droplet heat flux can be written as

qw,liq = χJwLMliq,m, (14)

where χ is the droplet-to-wall heat-transfer efficiency and Mliq,m is the mean-mass concentration of droplets in a
duct cross-section, defined as

Mliq,m =
2

UmR2

R∫
0

MliqUr dr.

For Tw > Tliq, the droplet-to-wall heat-transfer efficiency is given by the formula χ = exp [1− (Tw/Tliq)2] recom-
mended in [5].

Equation of Particle Motion. All computations in the present study were performed for a vertically oriented
duct. The following forces acting on the particles were taken into account: the drag force, the gravity force, and the
buoyancy force. The Saffman and Magnus forces were ignored. The aerodynamic forces due to the pressure gradient,
attached mass, and Basset effect were assumed to be negligible since they are proportional to the gas/liquid density
ratio, which, in the majority of practical cases, is of the order of 10−3.

The equation of droplet motion with allowance for the aerodynamic drag, gravity, and buoyancy forces can
be written in the following vector form:

mliq
dUliq

dt
= CDρ(U −Uliq) |U −Uliq|Aliq +mliqg

(
1− ρ

ρliq

)
. (15)

Here mliq = ρliqπd
3/6 is the mass of a droplet, CD is its drag coefficient, t is time, and g is the free-fall acceleration.

The projections of this equation onto the x and r axes have the form

mliq
dUliq

dt
= CDρ(U − Uliq) |U −Uliq|Aliq ±mliqg

(
1− ρ

ρliq

)
in the axial direction x or

mliq
dVliq

dt
= CDρ(V − Vliq) |V − Vliq|Aliq

in the radial direction r.
For evaporating droplets, the drag coefficient CD is given by the expression [5]

CD = CD,p/[1 + Cp(T − Tliq)/L],

where CD,p is the friction coefficient, given, for non-evaporating droplets, by the formulas

CD,p =

{
24/Rep, Rep 6 1,

24(1 + Re2/3
p /6)/Rep, Rep > 1.

Determination of Fluctuating Intensities of the Gas and Dispersed Phases. In the computations, all particles
were assumed to be sufficiently large, so that the relaxation time of each particle τ was longer than the integral
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time scale of turbulence Ω. The value of Ω, needed for determination of the radial fluctuating velocity of the gas
phase, is given by the formula [18]

Ω+ = ρΩU2
∗/µ =

√
l20+ + l2+,

which, as y+ → 0, reduces to the relation Ω+ = l0+ ≈ 10 (in the viscous sublayer, the integral time scale of
turbulence is assumed to be constant), whereas in the core of the turbulent flow, it reduces to the relation Ω+ =
l+ = ρlU∗/µ, where l+ is the relative mixing-path length and l is the mixing-path length given by the Prandtl–
Nikuradze formula [18]

l = R[0.14− 0.08(r/R)2 + 0.06(r/R)4].

The radial component of the root-mean-square fluctuations of the gas-phase velocity can be found from the relation
[19]

〈v2〉 = µt/(ρΩSct). (16)

The root-mean-square fluctuating velocity of the carrier phase in the axial direction is [19]

〈u2〉 ≈ 1.3k. (17)

For relatively large droplets, the turbulence intensity of the dispersed phase is given by the relations [19]

〈v2
liq〉 = 〈v2〉Ω/τ, Ω = Le/

√
〈v2〉, Le = 0.14R, (18)

where Le is the carrier-phase turbulence scale.
Boundary and Inlet Conditions. We have
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(20)

at the wall (r = R), and

U = U1, V = V1, T = T1, Mliq = Mliq,1, Tliq = Tliq,1,
(21)

d = d1, Kvap = KV 1, k = k1, ε = ε1

in the inlet cross-section of the duct.
In this study, we assume that the level of turbulence of the gas phase at the duct inlet is

Tu =
√

(1/3)(〈u2〉+ 〈v2〉+ 〈w2〉)/U = 3%.
Relations (1)–(18) with the appropriate boundary and initial conditions (19)–(21) represent a closed system of

equations for heat- and mass-transfer processes in a turbulent two-phase flow. This system allows one to calculate
all quantities of interest (distributions of temperatures and concentrations of the phases and components of the
vapor–gas mixture) and predict the downstream evolution of particle sizes.

3. Numerical Implementation and Testing of the Model. The partial differential equations were
numerically solved with the help of the Crank–Nicholson finite-difference scheme [20], by transforming the initial
differential equations to a system of discrete linear algebraic equations. The resultant tridiagonal system of equations
was solved by the sweep method according to the Thomas algorithm, described in more detail elsewhere [20]. We
used a computational grid with a variable mesh size, decreasing toward the duct wall. In the axial direction, the
grid was uniform.

All computations were performed on a grid with 201 nodal points in the axial direction and 101 nodal
points in the radial direction. In addition, some methodical computations were performed on a finer, 201 × 201
computational grid. These computations showed that the difference between the computed carrier-flow temperature
and droplet-diameter profiles in the two cases was well within 0.5%. In further computations, to examine heat and
mass transfer in the turbulent gas–vapor–droplet flow, we routinely used the 201× 101 computation grid.

To test the adopted model of turbulence, we compared the data yielded by this model with direct-simulation
data and experimental results obtained in [21] for an isothermal single-phase ducted airflow and also with the
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Fig. 1. Radial distributions of measured and calculated Reynolds numbers of glass particles in the steady-state
ducted flow: (a) downward flow; (b) upward flow; the solid and dashed curves refer to the model of [12] and the
algebraic model of [11]; the points show the experimental data of [23] (a) and [24] (b).

experimental data of [22]. The data yielded by the k–ε model of turbulence were found to fairly well predict
heat-transfer features for a turbulent single-phase gas flow [15].

To compare simulation data for two-phase flows with previously reported experimental results, we used the
experimental data of [23] for a downward gas–glass particle flow and the data of [24] for an upward gas–glass
particle flow. The predicted and measured radial distributions of the particle Reynolds number are shown in Fig. 1.
The input data for the computations were chosen to reproduce the experimental conditions of [23] (2R = 46 mm,
Re = 12,300, U0 = 4 m/sec, Mp = 2%, d = 50 µm, ρp = 2550 kg/m3, U∗ = 0.24 m/sec, and τ+ = 79) and [24]
(2R = 12.7 mm, Re = 24,500, U0 = 28.7 m/sec, Mp = 26%, d = 62 µm, ρp = 2640 kg/m3, U∗ = 1.61 m/sec,
and τ+ = 5417). To perform the computations, either the algebraic model of turbulence [11] or the k–ε model of
turbulence [12] was used.

The data obtained for the two-phase flow of the mixture with a low concentration of the dispersed phase
show that both models of turbulence rather adequately reproduce the measured radial distributions of the particle
Reynolds number (Fig. 1a). The computed data, as well as the experimental results, show that the slip velocity of
the phases increases in the near-wall zone of the downward flow.

For the upward flow of the gas suspension (Fig. 1b), the distribution of the slip velocity changes for the
opposite one: the maximum velocity is attained at the duct axis and the minimum one near the duct wall. It is
hardly possible to conclude definitely from Fig. 1b which of the two models more adequately predicts the behavior
of the particle Reynolds number Reliq in the flow with a high concentration of the dispersed phase. In the latter
case, effects of particle collisions with each other and with the duct wall are manifested. This might be the reason
for the observed difference between the predicted and measured values. In a flow with a high mass concentration of
the dispersed phase, effects due to inter-particle and particle-wall collisions, and also due to possible rotation of the
dispersed phase, could exert a substantial influence on the flow pattern [25]. Nonetheless, satisfactory agreement
between the predictions of the two models for the near-axis region of the flow and the experimental results is worth
noting. The model of [12], unlike the model of [11], predicts an increase in Reliq in the near-wall zone.

It should be noted that both models, [11] and [12], as applied to upward or downward flows, yield results
being in good qualitative agreement with the data of [26] obtained for a vertical isothermal dispersed flow in a
cylindrical duct.

Figure 2 compares the radial distributions of relative axial- and radial-velocity fluctuations of the gas and
dispersed phases with the experimental data of [27]. The experimental data in [27] were obtained for a downward
flow of an air–glass particle mixture by means of laser-Doppler anemometry. The input data for the computations
were chosen to comply with the experimental conditions adopted in [27]: 2R = 46 mm, U0 = 5.2 m/sec, d = 50 µm,
ρp = 2550 kg/m3, U∗ = 0.31 m/sec, Mp = 5%, τ+ = 125, and Re = 15,300.

The computed intensities of the axial- and radial-velocity fluctuations of the gas phase compare well with
the experimental data. The agreement between the experimental data and the values predicted by the theoretical
model of [19] is somewhat worse. The distributions plotted in Fig. 2 show that the intensity of radial fluctuations
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Fig. 2. Distribution of the root-mean-squared velocity fluctuations of the air–glass particle flow: the curves refer
to the calculated data and the symbols are the experimental data of [27] for 〈u2〉1/2/U0 (1), 〈v2〉1/2/U0 (2), and

〈v2
liq〉1/2/U0 (3).

Fig. 3. Variation of wall temperature along the duct in a single-component vapor–droplet flow for Mliq,1 = 0.35,
qw = 7.14 kW/m2 (1), and Mliq,1 = 0.43, qw = 2.13 kW/m2 (2): the solid and dashed curves refer to the models
of [12] and [11], respectively; the points show the experimental data of [3].

of particle velocity is lower than the corresponding value for the carrier phase. This fact can be explained as follows.
The Stokes number of the large-eddy motion is defined as S = τ/Ω. For the conditions under consideration, S ≈ 1,
i.e., the particles readily get involved into the large-eddy motion and take off energy from turbulent carrier-phase
eddies. A decrease in the intensity of the radial-velocity fluctuations of the gas phase causes a decrease in the
particle-velocity fluctuations [27].

To estimate the accuracy in predicting the heat-transfer characteristics of a vapor–droplet flow, we compared
the results yielded by the present computational model with the experimental data of [3]. The wall-temperature
profile over the duct length for the vapor–droplet flow is shown in Fig. 3. The input data for the computations
were as follows: 2R = 10 mm, saturation pressure Psat,1 = 3.08 · 105 Pa, Tsat,1 = Tliq,1 = T1 = 300 K, d1 = 30 µm,
and inlet Reynolds number Re1 = 5.1 · 105. The working liquid was Freon R-113. It follows from Fig. 3 that the
predicted and measured data agree with each other under high thermal loads better than at low values of qw. A
possible reason for the observed difference between the predicted and measured data is inconsistency between the
adopted and actual mechanisms of heat transfer between the gas–droplet flow and the wall. In particular, as the
wall temperature decreases, the formation of liquid films on the wall surface, ignored in the present model, becomes
more probable. At the same time, the k–ε model provides better agreement with the experimental data, compared
to the algebraic model of [11].

An analysis of the data in Figs. 1–3 allows us to conclude that the k–ε model of turbulence and the alge-
braic relations for the root-mean-square fluctuations of gas-phase and particle velocities rather adequately predict
fluctuating processes, dynamics of both phases, and heat- and mass-transfer features in developed two-phase flows.

4. Computation Data. The computations were performed for an air–steam flow with water droplets
(under atmospheric pressure). The duct length was 2 m, the inner duct diameter was 0.02 m, the inlet temperature
of the vapor–gas flow T1 = 293–373 K, the flow Reynolds number Re = 5 · 103–106, the inlet droplet diameter
d1 = 0.1–100 µm, the dimensionless relaxation time of the droplets τ+ = 10−3–103, the mass fraction of the droplet
phase Mliq,1 = 0–0.1, and the mass fraction of air Mair,1 = 0–0.8. All computations were performed for a fixed wall
heat-flux density (qw = const), namely, for qw = 1 kW/m2.

Figure 4 illustrates how the mass concentration of liquid droplets affects the surface friction and the rate
of heat transfer (Cfr,vap and Nuvap are the friction and heat-transfer coefficients of a single-phase vapor flow).
An increase in the liquid-phase concentration and initial particle size causes an increase in the friction coefficient
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Fig. 5. Heat-transfer intensification ratio Nu/Nuvap versus inlet droplet diameter d1 at x/(2R) = 20 and Re =
1.8 · 103 (1), 104 (2), 5 · 104 (3), and 105 (4).

Fig. 6. Heat-transfer intensification ratio versus air concentration for Re = 13,000, Mliq,1 = 0.1, and Mair,1 = 0
(1), 0.01 (2), 0.1 (3), 0.2 (4), and 0.5 (5).

compared to that in a single-phase flow. An analysis of Fig. 4 allows the following conclusions to be made. The
presence of evaporating droplets has an appreciable influence on heat-transfer intensification in the two-phase gas–
vapor–droplet flow (the rate of heat transfer increases more than threefold), whereas the wall friction increases
only insignificantly (roughly by 10%). An increase in the inlet droplet diameter increases the surface friction and
decreases the heat-transfer intensity.

The impact of the inlet droplet diameter on the heat-transfer intensification ratio is illustrated by Fig. 5. An
increase in the inlet droplet diameter (at a fixed mass concentration of the liquid phase) diminishes the intensity of
heat- and mass-transfer processes; this effect can be attributed to the appreciable reduction of the interfacial contact
area between the vapor–gas flow and the liquid droplets. For fine particles with d1 < 2–5 µm, the ratio Nu/Nuvap

does not depend on the inlet droplet diameter. This range of particle sizes defines a steady-state evaporation regime
with thermodynamic equilibrium between the vapor–gas mixture and the liquid phase. This conclusion is in line
with the experimental data of [28].
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Fig. 8. Comparison of the predicted data with the experimental data of [5]: qw = 14.53 (1), 8.34 (2), and
6.4 kW/m2 (3).
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data and experimental data of [6] for qw = 17.84 (1), 13.92 (2), and 11.5 kW/m2 (3).

The heat-transfer intensification ratio as a function of air concentration in the vapor–gas mixture is shown in
Fig. 6. For the single-component vapor–droplet flow without air (curve 1), the ratio Nu/Nuvap displays a minimum
at x/(2R) . 25. With increasing air concentration, the heat-transfer rate increases since the diffusion of vapor from
the droplet surface into the ambient flow becomes more intense; in this case, however, the length of the two-phase
flow region in the downstream direction diminishes owing to the more intense droplet evaporation.

Such a complex multi-stage mechanism of heat transfer from the duct wall to the two-phase flow being
operative, it is of interest to consider the contributions of various heat-flux components to the total heat flux on the
wall. The distributions of individual heat-flux components over the duct length for various mass concentrations of
the liquid phase are shown in Fig. 7 (qfl is the heat flux spent on heating the vapor–gas flow, qw,liq is the conductive
heat flux due to immediate wall-droplet contacts, qe is the heat flux spent on droplet evaporation, and qliq is the
heat flux spent on droplet heating). From Fig. 7, the following conclusions can be drawn. In the inlet region of the
heat-exchanging duct, a predominant portion of heat supplied to the duct wall is spent on conductive heat transfer
and droplet evaporation. Further downstream, as the droplets undergo evaporation, the heat-flux components qliq,
qw,liq, and qe decrease, whereas the density of the heat flux to the vapor–gas phase permanently increases until the
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ratio qfl/qw finally reaches unity. In this case, a single-phase flow is established in the duct. A change in the inlet
concentration of the liquid induces no fundamental changes in the proportion between various heat-flux components
except for the initial region of the flow, where, at low concentrations Mliq,1, the predominant part is played by the
heat exchange with the vapor–gas mixture.

The heat-transfer intensification ratios for the wall-to-flow heat transfer in the gas–droplet flow, which were
experimentally measured in [5] and predicted in the present work, are shown in Fig. 8 (αair is the heat-transfer
coefficient for the single-phase air flow under identical conditions). The input data for the computations were as
follows: Mliq,1 = 1.1–2.1%, Re = 21,800–58,600, 2R = 12.95 mm, computed length 0.889 m, Gair = 4.02–10.8 g/sec,
d1 = 9–23 µm, τ+ = 139–208, and T1 = 300 K. The experiments were performed under atmospheric pressure. It is
seen that, as the wall heat-flux density increases, the ratio α/αair monotonically decreases owing to the increase in
wall temperature.

The measured distributions of the wall temperature Tw along the duct are shown in Fig. 9. The input data
for the computations were chosen to reproduce the experimental conditions in [6]: Mliq,1 = 0.5%, Re = 39,300,
2R = 13.2 mm, computed length 0.924 m, Gair = 7.58 g/sec, d1 = 16 µm, τ+ = 272, and T1 = 293 K. The
experiments were performed under atmospheric pressure. Figure 9 shows that the computed wall temperatures
agree fairly well with the experimental data.

5. Conclusions. A physical model for heat and mass transfer in a turbulent gas–vapor–droplet flow in a
cylindrical duct was developed. In this model, the liquid phase is a system of localized sinks of heat and localized
sources of vapor. To calculate turbulent characteristics of the gas phase, we used the k–ε model of turbulence. A
closed system of transfer equations was composed, which includes the continuity equation, equation of axial flow,
the energy equation with a source term, the diffusion equation for the vapor–gas mixture with a source of vapor, and
the heat- and mass-transfer equation for a single droplet. The model takes into account the deposition of droplets
onto the duct wall and heat transfer due to immediate droplet–wall contacts.

A numerical heat- and mass-transfer study of a ducted turbulent two-phase gas–vapor–droplet flow was
performed in which the thermal and gas-dynamic characteristics of the flow at the duct inlet were considered as
variable parameters.

It is shown that, with increasing inlet droplet diameter, considerable intensification of heat transfer between
the duct surface and the gas–vapor–droplet mixture occurs, whereas the increase in wall friction is insignificant.

With increasing mass concentration of liquid droplets, considerable intensification of heat- and mass-transfer
processes is observed in the two-phase flow, with an increase in the fraction of heat spent on phase transition and
heat transfer due to immediate droplet-wall contacts. The wall friction increases insignificantly.

An increase in the mass concentration of air considerably enhances the rate of heat transfer, simultaneously
decreasing the length of the two-phase zone of the flow in the downstream direction. Good agreement between the
computed values and available experimental data is obtained.

This work was supported by the Russian Foundation for Fundamental Research (Grants Nos. 01-02-16994
and 02-02-06327-mas).
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